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Abstract
A new model for the formation of trapped ions around a negatively charged
dust particle immersed in low-density non-equilibrium plasma of gas discharge
is presented. It is shown that the ionic coat leads to a shielding of the proper
charge of the dust particle. In experiments it is only possible to detect the
effective charge of a dust particle that is equal to the difference between the
proper charge of the particle and the charge of trapped ions.

PACS numbers: 52.27.Lw, 52.20−j, 52.35.We

(Some figures in this article are in colour only in the electronic version)

A dust particle charge plays a great role in complex plasma, and it is important to know that for
understanding different physical processes in dusty plasma [1]. It determines the interaction
of the particle with other dust grains, ions and electrons in the surrounding plasma, and with
external electric fields. In their turn, the plasma parameters determine the dust particle charge.
Even a single dust particle immersed in low-temperature plasma presents an example of a
strongly coupled Coulomb system. The orbital motion limited (OML) theory for spherical
grains in low-density plasma is often applied to obtain the charge of dust particles [2]. This
approach deals with collisionless electron and ion trajectories in the vicinity of a small probe
or dust particle and only the laws of energy and angular momentum conservation are used to
calculate electron and ion fluxes to the surface of grain. However, Goree [3] in 1992 showed
that ions can lose energy in rare collisions with atoms and become trapped in finite orbits by
the electric field of a charged particle. The problem of trapped ions was studied by Lampe in
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papers [4, 5] with the help of the analytical method and in a number of other papers [6–9] with
the help of different numerical methods. In all these papers, the limitations of OML theory
were considered and the influence of collisions was investigated.

In this paper, we present a new alternative model (equation (7)) for collisionless conditions
for the formation of trapped or bound ions around the dust particle in low-pressure plasma
when the newly formed trapped ions have the time to make several rotations around the particle
before the next collision. Only in such rare collisional regimes it is possible to separate free
and trapped ions, and trapped ions screen the proper charge of a dust particle in the same way
as orbital electrons screen the nucleus in an atom [5]. This statement is investigated through
comparison with experimental data on the charge of a dust particle [10, 11] measured partly
in rare collisional plasma. The obtained results are extrapolated to the collisional region of
the experimental data where they should be corrected.

Below we consider the model of the formation of an ion coat around a dust particle with
radius r0 that consists of trapped ions captured on finite orbits as a result of rare charge exchange
collisions of neutral atoms with free ions falling to the particle from ambient plasma. When
far from the particle, ions have an isotropic Maxwellian distribution function. On approaching
the charged particle, ions accelerate in a self-consistent electric potential U(r)/e of a particle
immersed in plasma and they undergo rare elastic collisions with neutral atoms of a parent
gas. The consideration of elastic collisions is a very difficult problem, which requires the
solution of the Boltzmann equation or should be solved with the help of Monte Carlo methods
(if differential cross sections of ion-neutral atom are known). However, elastic collisions of
ions in the parent noble gas have a sharp peak of backscattering when the colliding ion and
atom exchange their velocities. In this paper, for mathematical simplification we consider only
such resonant charge exchange ion-atom collisions. Moreover, we assume that the collision
frequency, ν = Ngσ resvi-a, is independent of relative ion-atom velocity vi-a. Such assumptions
were also made in [5].

Radial distribution of free ions, Nif(r), has the form [5–7]

Nif(r) = N0
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where N0 is the density of the ambient plasma, ε is the ion kinetic energy, fM(ε) =
(2/

√
πT 3/2) exp(−ε/T )ε1/2 is the Maxwellian energy distribution function of both neutral

atoms and free ions in the ambient plasma (far from the charged dust particle), Ti = T is
the temperature of atoms and ions, U(r)/e is a self-consistent electric potential of a particle
immersed into plasma. In this paper, we use definitions for radial-dependent functions

E0(r) = [
r2U(r) − r2

0 U(r0)
]/(

r2 − r2
0

)
, Em(r) = r2

0 (U(r) − U(r0))
/(

r2 − r2
0

)
. (2)

After the resonant charge exchange collision of free ion with a neutral thermal atom at distance
R from the charged particle, the atom is transformed into an ion with velocity �v characterized
by angle θ with respect to the direction of the radius vector �R. The newly formed ion can be
trapped by a dust particle with probability Ptr(r), fall to the particle surface with probability
Pfall(r), or become free with probability Pfree(r) depending on the values of kinetic energy
ε and orbital momentum J = MvR sin θ . To be trapped, the newly formed ions should
have negative energy Et(R) = ε + U(R) < 0 (we used the assumption that effective potential
Ueff(r) = U(r) + εR2 sin2 θ/r2 has no maxima, see [5]) and cannot reach the particle surface,
i.e. the minimal distance from the trapped ion to the particle center, rmin, satisfies the relation:
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rmin = r0. This condition gives the range of angles θmin < θ < π − θmin of ion velocity after
the charge exchange collision with an atom in which the ion becomes trapped:

sin2 θmin(R, ε) = r2
0

R2

(
1 +

U(R) − U(r0)

ε

)
. (3)

The trapped ion kinetic energy satisfies the condition: 0 < Em(r) < ε < −U(r). The average
probability Ptr(R) is

Ptr(r) =
∫ −U(r)

Em(r)
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From equation (4), it can be concluded that trapped ions can be formed in the region from r0

to R0 only, where R0 is defined from the relation r2
0 U(r0) = R2

0U(R0).
In the same way, we introduce probability Pfall(r) that after a charge exchange collision an

ion falls on the particle, and probability Pfree(r) that the ion acquires positive total energy and
therefore runs away to infinity (or for some interval of angles θ , falls on the particle). These
probabilities are equal to

Pfall(r) = 2√
π
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where we take into account the fact that ions with small energy (ε < Em (r)) fall on the particle
irrespective of their angular momentum, and

Pfree(r) = 2√
π

∫ ∞

−U(R)/T

√
y exp(−y) dy. (6)

It can be easily verified that Ptr(r) + Pfree(r) + Pfall(r) = 1.
In unit time as a result of charge exchange collisions of free ions with neutral atoms

(with collisional frequency ν), trapped ions are created at point R and move around a charged
particle contributing to the density of trapped ions Ntr(r) at different points along their finite
trajectories. This contribution in the layer dr is proportional to the ratio of ion residence time
in dr, dt (R, r, ε, θ) = dr/vr(R, r, ε, θ), (vr(R, r, ε, θ) is the radial velocity of the trapped ion
formed at point R and transferred to point r) to time Ttr(R, ε, θ) of an ion moving from rmin(R,
ε, θ ) to rmax(R, ε, θ ). Thus, we can obtain the balance equation for the creation and loss of
trapped ions:

νNtr(r)(Pfall(r) + Pfree(r)) = ν
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, (7)

In this equation, we introduce the Heaviside step function, �(x) = 1, x > 0; �(x) = 0, x < 0,
which ensures the calculation of integrals only in the accessible region of parameters. The left
side of this equation takes into account the fact that trapped ions disappear after a subsequent
collision with thermal atoms as a result of falling to the surface of the particle or their acquiring
a positive total energy in the collision. The balance equation (7) for trapped and free ions
are valid only in the first approximation for low-density conditions, νTtr(R) < 1, when the
division of ions into two groups (free and trapped ions) can be justified (Ttr(R) is an averaged
characteristic time of trapped ion rotation around charged particle). In a collisional case, the
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Vlasov–Boltzmann equation or the Bhatnagar–Gross–Krook (BGK) equation for the velocity
distribution of ions should be solved (see the recent paper [8]). The collisional case was
also studied with the help of particle-in-cell calculations by Hutchinson and Patacchini [9]. It
should be stressed that the model presented by equation (7) is consistent with the low-frequency
limit of the solution of the BGK equation obtained in [8].

Integrating equation (7) over r from r0 to R0, we can receive an obvious total balance of
trapped ions creation and loss in the whole region around a charged particle:

4πν

∫ R0

r0

dR R2Ntr(R)(Pfall(R) + Pfree(R)) = 4πν

∫ R0

r0

dR R2Nif(R)Ptr(R). (8)

The calculation of equation (7) is rather difficult due to the singularities of the integral kernel in
the right side of the balance equation, and due to the necessity of calculating the self-consistent
potential U(r) that require an iterative approach. In this paper, we consider a simplified version
of equation (7). It is seen that singularities of the kernel in equation (7) are most pronounced
at R = r and θ = π/2. It means that a trapped ion at its trajectory spends most time near the
remote turning point. Thus we can obtain an approximate form of the balance equation

Nif(r)Ptr(r) = Ntr(r)(Pfall(r) + Pfree(r)), (9)

which is consistent with a total balance equation (8). Possibly, this approximation leads
to a narrower radial distribution of trapped ions than the exact distribution obtained from
equation (7).

However, as is seen in equation (8), it does not change the total number of trapped ions.
All probabilities in equation (9) are functions of electric potential U(r), which must be

determined self-consistently from the solution of the Poisson equation. Taking into account
the spherical symmetry of volume charge distribution, we can obtain

U(r) = −e2Z0

r
+

4πe2

r

∫ r

r0

dx x2�N(x) + 4πe2
∫ ∞

r

dx x�N(x), (10)

where �N(r) = Nif (r)+Ntr(r)−Ne(r) is the density of volume charge of ions and electrons
at point r. The volume charge and the charge of trapped ions in the space between the particle
and the sphere of radius r are equal to

Q(r) = 4πe

∫ r

r0

dr r2(Nif(r) + Ntr(r) − Ne(r)), Qtr(r) = 4πe

∫ r

r0

dr r2Ntr(r). (11)

To obtain distributions U(r),Ntr(r) and Qtr(r), the following iterative procedure was used.
At the initial step the dust particle charge number Z0 was chosen for the given discharge
parameters (gas and ambient plasma densities, Ng,N0, electric field, Ez, ion temperature, Ti)
according to the OML model. Assuming that the initial electric potential radial distribution is
Debye–Hückel, U 0(r) = −e2Z0 exp(−r/λi)/r, where λi = (Ti/4πe2N0)

1/2, we calculated
the radial distributions of all probabilities (4)–(6) and ion number densities Nif(r), Ntr(r).
Then a new distribution of a self-consistent electric potential U(r) was found with the help
of the Poisson equation. The final electric potential and volume charge distributions and the
collisional ion flux to the particle surface, Itr, were found using the iterative method. The
collisional ion flux of the trapped ions was calculated with the help of the formula

Itr = 4πν

∫ R0

r0

Pfall(r)Ntr(r)r
2 dr, (12)

which is valid in the first approximation for low-pressure plasma conditions. The total ion flux
to the particle is the sum of a free ion flux (OML model) and a collisional ion flux, Ii = Iif + Itr.
Equating the total ion flux to the electron flux, Ie, we can find a new dust particle charge. For
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(a)

(b)

Figure 1. Distributions of free ions (solid lines), Nif(r); trapped ions (dashed lines), Ntr(r); electrons
(dash-dotted lines), Ne(r); and total space charge (dotted lines), �N(r). Ion temperature, T =
300 K. (a). Debye–Hückel length, λi/r0 = 10; τ = 333. (b) λi/r0 = 66, τ = 333.

this value of a particle charge, the iterative procedure described above was repeated. The final
values of the dust particle charge, the distributions of charged particles and electric potential
do not depend neither on the choice of the initial value of Z0 nor on the initial electric potential
distribution U0(r).

The developed model permits us to calculate Nif(r), U(r) and Qtr(r) for parameters of
low-temperature plasma when the condition r0 < λi < 1/Ngσres is fulfilled. In figure 1, the
radial distributions of trapped ions Ntr, free ions Nif and electrons Ne and the total volume
charge �N are presented for two values of λi for the given τ = |Z0|e2/r0T = 333. It is
seen that the trapped ion density Ntr(r) (and the probability Ptr(r)) has the maximum value at
some distance from the charged particle. For distances beyond this maximum the behavior of
Ntr(r) is in full agreement with the results of Lampe [5] and calculations of [8, 9] for ν→0.
At small distances, Ntr(r) decreases (possibly due to the approximation made in equation(9)),
which contradicts the conclusion made in paper [5]. However, this fact does not influence
the value of the total charge of trapped ions, Qtr(r→∞), which is equal to 40–60% of the
proper charge of the dust particle, |eZ0|, depending on λi. This result is in agreement with
the prediction of Lampe [5]. The calculation of the volume charge Q(r) shows that at infinity
the total volume charge is equal to the charge of a particle, eZ0, i.e. Q(r → ∞) = |eZ0|, with
great accuracy irrespective of the chosen initial potential U0(r) and probabilities Ptr(r).

From formula (10), it is seen that radial distribution of electric potential U(r) has a
finite jump from value U0 = −e2Z0/r0 to U(r0) = U0 + 4πe2

∫ ∞
ro

dr r�N(r). This fact is
important for the calculation of self-consistent distributions of electric potential and ion
densities. In figure 2, a radial distribution of electric potential, U(r), Coulomb potential of the
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(a)

(b)

Figure 2. Radial distribution of self-consistent potential U(r) (squares). Coulomb potential of the
particle (dotted lines). Initial Debye–Hückel potential curves (solid lines). The radial dependences
of the first and second integrals in equation (10) are presented by dashed dot and dashed lines.
(a) Debye–Hückel length, λi/r0 = 10; τ = 333; (b) λi/r0 = 66, τ = 333.

particle, initial Debye–Hückel potential curves, the radial dependences of the first and second
integrals in equation (10) are presented for the same conditions as in figure 1. It is seen that the
second integral in equation (10) is responsible for the shielding of a particle charge in plasma.
In particular, trapped ions provide a strong screening of the proper charge of the dust particle,
and the resulting potential differs only slightly from the Debye–Hückel potential. It should be
mentioned that this result contradicts the radial distribution of the potential obtained in recent
papers [8] and [13], where the potential has Coulomb-like asymptotic. Such behavior of the
potential at large distances from a charged particle immersed in plasma means that there is
some sphere in which the total charge of a particle, ions and electrons is not compensated. If
this is the case, then plasma outside this sphere will redistribute and screen this residual charge.
Under low collision frequencies, in [8, 13] this residual charge is about 1% of the particle
charge. However, in [8] the accuracy of numerical calculations was estimated to be 3%. In
paper [13] the Coulomb-like asymptotic for a point-like particle was obtained analytically
with the help of several approximations. Thus, it is necessary to investigate this problem more
carefully due to its importance for understanding the processes occurring in dusty plasma.

In figure 3, the calculated dependence of a particle charge on neon pressure in the range
p = 20–150 Pa are presented for conditions in a glow discharge with electric field E =
2.1V cm−1 [10, 11]. In these experiments, the condition νTtr(R) < 1 is fulfilled at least for
the low-pressure part of experimental data. The solid line represents the calculations using
conventional OML theory with the non-equilibrium electron energy distribution function
obtained from the Boltzmann equation [12], ZOML(p). The dashed line is the calculations of a
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Figure 3. Dependence of particle charge Z0 normalized to particle radius r0 on gas pressure:
result of the OML model, ZOML(p) (solid line); self-consistent solution for Z0(p) (dashed line);
dust particle effective charge Zeff(p) (–�–�–�–); symbols are experimental data [10, 11] for the
particles with different radii (r0 = 0.6, 1.0 and 1.3 μm).

self-consistent particle charge number, Z0(p), obtained with the help of the presented model.
Experimental results [10, 11] are shown by symbols. It is seen that self-consistent particle
charge number Z0 for low-pressure conditions of [10, 11] is only slightly smaller than the
charge number calculated with the help of the OML model, ZOML. The difference between
experimentally obtained and calculated particle charges for low-pressure conditions cannot be
explained in terms of the collisional ion flux only.

In low-density complex plasma, a negatively charged dust particle exists with its ionic
coat. The charged particle is bound by an electric field with trapped ions in the same way
as the atomic nucleus is bound with orbital electrons [5–7]. The electrostatic force acting on
a dust particle with the ionic coat is proportional to electric field strength and the effective
charge of the particle, eZeff. In figure 3, the dependence eZeff = eZ0 − Qtr(r → ∞) on neon
pressure was shown by a solid line with squares. The values of an effective particle charge
are in fairly good agreement with experimental data [10, 11]. It should be stressed that this
curve was obtained without any fitting parameters. The increase of collision frequency in
plasma leads to an increase of collision flux of ions to the particle, which reduces the proper
particle charge. Simultaneously, the trapped ion coat is gradually destroyed due to collisions
of trapped ions along their finite trajectories. These two effects partly compensate each other.

We can conclude that in low-pressure experimental investigations based on the
electrostatic interaction of two dust particles or the interaction of a charged dust particle
with an external electric field, only an effective charge of a dusty particle rather than a proper
charge of a particle can be found, and the screening provided by trapped ions should be taken
into account.
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